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An improved upwind relaxation algorithm for the Navier-Stokes 
equations is presented, and results are given from the application of 
the method to two test problems, including (1) a shock/boundary 
layer interaction on a flat plate (M, = 2.0) and (2) a high-speed 
inlet (M, =5.0). The technique is restricted to high-speed (i.e., 
supersonic/hypersonic) viscous flows. The new algorithm depends on 
a partitioning of the global domain into regions or sub-domains, 
where a relatively thin “elliptic” region is identified near each solid 
wall boundary, and the remainder of the flowfield is identified to 
be a single larger “hyperbolic” (i.e., hyperbolic/parabolic in the stream- 
wise direction) region. A direct solution procedure by lower/upper 
factorization is applied to the elliptic region(s), the results of which are 
then coupled to a standard line Gauss-Seidel relaxation sweep across 
the entire domain in the primary flow direction. In the first test problem, 
the new algorithm reduced total run times as much as 75% when 
compared to the standard alternating forward/backward vertical line 
Gauss-Seidel (VLGS) algorithm, whereas in the second test problem, 
a total savings as high as 20% was achieved. Essentially all of this 
improvement occurred only after the initial transient in the solution 
was overcome. However, in the second test problem, a significant 
improvement in the computational performance of the standard 
forward/backward VLGS algorithm was noted when overcoming the 
initial transient simply by converting from the use of conserved 
variables to primitive variables in the spatial discretization and lineariza- 
tion of all terms. 0 1992 Academic Press, Inc. 

INTRODUCTION 

One of the most attractive properties of the more recently 
developed upwind methods for the Euler and Navier- 
Stokes equations is that, unlike central difference methods, 

upwind methods are naturally dissipative and thus require 
the addition of no explicit artificial viscosity terms to 
achieve stability. In contrast, a primary drawback of 
upwind methods (when compared to central difference 
schemes) is that of an increase in computational work per 
time step or iteration. 

Fortunately, when using an implicit technique, upwind 
methods result in coefficient matrices which are more nearly 
diagonally dominant than those matrices which arise 
through the use of central differences. As a consequence of 
this, upwind relaxation methods for the Navier-Stokes 
equations have recently been developed and successfully 
tested (Refs. [l-9]) as an alternative to the more widely 
used approximate factorization methods (Ref. [ lo] ). These 
upwind relaxation techniques have in many cases produced 
significant improvements in overall convergence rates per 
iteration, particularly for high-speed problems. This of 
course helps to offset the increased computational work per 
iteration associated with an upwind procedure. 

The principal objective of the present research is to 
develop and test improved relaxation algorithms in order 
to more efficiently obtain steady-state solutions to the 
Navier-Stokes equations. The focus of the present work will 
be a proposed new relaxation algorithm which is applicable 
exclusively for high-speed viscous flows which are essen- 
tially supersonic in character, yet these flows of interest 
will typically have regions of subsonic flow immediately 
adjacent to solid wall boundaries. 
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The relaxation algorithm to be described herein depends 
on a judicious partitioning of the global domain into dis- 
tinct regions or subdomains, as the solution evolves. This 
partitioning of the flowlield is made such that immediately 
adjacent to each solid wall boundary, a distinct, relatively 
thin region is identified which will be loosely described 
henceforth as “elliptic” in character. These elliptic regions 
will include (but are not necessarily limited to) all of the 
subsonic flow which can be found in the global domain and 
will also include all supersonic reverse flow (if any). The 
remainder of the flowlield is then identified to be a single, 
relatively large region containing purely supersonic flow. 
This region henceforth will be referred to as the “hyper- 
bolic” region (i.e., hyperbolic/parabolic in the streamwise 
direction) and should contain the majority of the flowfield 
for the class of flows which are investigated in the present 
work. 

Once this partitioning of the global domain is accom- 
plished, the proposed relaxation algorithm may be 
described briefly as a two-step procedure, as follows: In the 
first step, special attention is paid to the elliptic region(s). In 
each of these elliptic regions, the implicit (but not explicit) 
coupling of these regions to the global domain is tem- 
porarily neglected. This temporary implicit uncoupling 
along subdomain interfaces allows for the application of a 
“direct solver” procedure to each individual sub-system of 
equations which can be identified and is associated with 
each elliptic sub-domain, in order to obtain a temporary 
estimate for the incremental change in the field variables in 
these elliptic regions. A highly-vectorized LU factorization 
and back substitution algorithm for banded matrices was 
used to solve the linear system in these regions. 

In the second step of the proposed relaxation algorithm, 
the temporary solutions in the elliptic regions from the first 
step are coupled to a standard line Gauss-Seidel forward 
relaxation sweep in the streamwise direction across the 
entire domain. This two-step relaxation procedure is then 
repeated until satisfactory global convergence is obtained. 
The purpose of the first step of the algorithm is to accelerate 
the convergence rate (i.e., the rate of error reduction per 
iteration) of the conventional line relaxation algorithm, 
which is the second step. This research will investigate under 
what conditions, if any, that the extra CPU time spent in the 
first step of the procedure will be offset (and by how much) 
by the accelerated rate of error reduction per iteration of the 
second step. 

A full and more complete description of this proposed 
relaxation algorithm will follow this Introduction in the 
next section. After that, results of the application of the new 
method to two test problems are presented and compared to 
results using a conventional line relaxation algorithm on the 
same test problems. The final section is a summary of the 
work and includes the conclusions. 

PRESENTATION OF THEORY 

Governing Equations 

The governing equations of this research are the 2D 
unsteady Navier-Stokes equations, although the truly 
significant and practical potential benefits of this work will 
be realized only if the method which is to be presented can 
be successfully adapted for use in 3D. Only laminar flow is 
considered in the test problems, but the methods of the pre- 
sent research are fully applicable when turbulence modeling 
is used. The “thin-layer” approximation is also used, where 
all viscous terms involving a gradient in the streamwise 
direction are discarded, and the ideal gas law is used for 
closure. For purposes of the present work, the governing 
equations are written in the form given by 

ffg= R(Q); (1) 

Q is a four-element vector which includes the conserved 
variables of mass, two components of momentum in 
Cartesian coordinates, and total energy, all on a per unit 
volume basis. R(Q) is called the residual, which is clearly 
equal to zero for a steady-state solution. It is comprised of 
the inviscid flux terms plus the thin-layer viscous terms. 
A transformation from Cartesian (x, y) coordinates to 
generalized (5, q) coordinates is included in the residual, 
and Jis the determinant of the Jacobian matrix of this trans- 
formation. 

Spatial Discretization and Implicit Formulation 

Computationally, the governing equations were solved in 
integral conservation law form using a cell-centered finite 
volume formulation. Only an overview of this method will 
be given here. The specific details on the implementation of 
this procedure are given in Refs. [l-9], where Ref. [9], in 
particular, is a comprehensive treatment of the subject. 

In the finite volume method, the residual is written at 
each cell in the domain as a balance of inviscid and viscous 
fluxes which must be evaluated at the cell interfaces. 
Upwind inviscid flux evaluation at the cell interfaces was 
accomplished in the present work by (1) upwind interpola- 
tion of the vector of conserved variables, Q, to the cell inter- 
faces from the (approximate) cell centers, and (2) using the 
flux vector splitting method of van Leer (Ref. [ 11 I), 
although other available upwind methods could also have 
been chosen (Refs. [12, 131). 

Accuracy of the spatial discretization of the inviscid terms 
depends on the accuracy of the interpolation of the vector Q 
to the cell interfaces. In all computations of the present 
research, a second-order accurate, fully upwind inviscid flux 
balance was used in the streamwise (0 direction, and a 
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third-order accurate upwind biased flux balance was used in 
the normal (q) direction. Finally, all viscous terms were 
discretized in space using the finite volume equivalent of 
second-order accurate central “differences.” 

Discretization of Eq. (1) in space as previously described, 
and also in time using the Euler implicit method, then 
linearizing in time, gives a coupled set of linear equations 
which is associated with each cell in the domain, written 
below (Eq. (2)) for thejkth cell (note that subscriptj refers 
to the streamwise (5) direction, subscript k refers to the 
normal (v) direction; all variables in Eqs. (2) and (3 ) having 
only a single subscript in fact represent doubly subscripted 
variables, where the identity of the omitted subscript, either 
j or k, is apparent), 

+ [II” (“dQj+lI = {RJi(Q)}, (2) 

where 

[A] through [Z] are 4 x 4 matrices constructed of linear 
combinations of the flux Jacobian matrices, and [Z?] 
includes the time term. {“de,,} is the 4 x 1 vector of 
incremental change in the conserved variables at thejkth 
cell between the next ((n + 1)th) time level and the current 
or known (n th) time level, such that 

{“AQjk) = {Q,n,” > - {QJk). 

Domain Partitioning 

Figure 1 is an illustration of a general nine-point 
“molecule” representation of the vector equation which is 
associated with each cell in the domain, given by Eq. (2). 
Note that this nine-point molecule can be found on both 
sides of Eq. (2). Henceforth this complete nine-point stencil 
will be referred to as an “elliptic” molecule. 

Under certain specific restrictions which will be 
explained, the functional dependence of Rjk(Q) at a par- 
ticular cell on Q,, I and Q,, 2 (see Eq. (3)) is eliminated, 
and therefore the matrices [G] and [Z] of Eq. (2) vanish. 
The resulting special case molecule is illustrated in Fig. 2, 
and henceforth this simpler seven-point stencil will be 
referred to as a “hyperbolic” (i.e., hyperbolic/parabolic in 
the streamwise direction) molecule. 

Streomwisection 

J-2 J-1 j j+l j+2 

FIG. 1. General “elliptic” molecule representation of Eq. (2). 

The specific conditions which are required in order to 
obtain the special case hyperbolic molecule of Fig. 2 at a 
particular cell are: 

(1) The flow must be supersonic in the positive 
streamwise (5) direction at the cell. 

(2) A fully upwind interpolation of the conserved 
vector, Q, is required in the streamwise (5) direction. 

(3) The “thin-layer” approximation to the viscous terms 
must be used, if a fully consistent linearization of all terms 
is to be used, as was the case in the present research. 

For purposes of this research, a molecule which is 
associated with a given cell is classified by the preceding 
three criteria as being either hyperbolic or elliptic, and is not 
precisely classified as such by Figs. 1 and 2. These three 
criteria when satisfied assure that matrix coefficients [G] 
and [Z] of Eq. (2) are zero. In short, if [G] and [I] are zero, 
the molecule is labelled hyperbolic; otherwise it is labelled 
elliptic. This is the precise criterion (in this research) which 
determines whether a cell is labelled elliptic or hyperbolic, 
regardless of what other matrix coefficients of Eq. (2) are or 
are not zero. As an example, using this definition, separated 
flow at a cell which is supersonic in the negative streamwise 

* 
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k 

k-l 

k-2 

j-2 j-l j j+I j+2 

FIG. 2. Special case “hyperbolic” molecule, matrix coefficients [Cl. 
[I] (Eq. (2)) equal to zero. 
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(5) direction would result in a molecule which is classified as 
being elliptic, even though coefficients [F] and [ZZ] will be 
zero when the other two criteria of the above list are 
satisfied. Additionally, it is noted that a higher order spatial 
discretization of all terms is required to produce exactly 
the molecules in Figs. 1 and/or 2. The new algorithm is 
applicable if a first-order spatial discretization is used, 
where a simpler molecule in both Figs. 1 and 2 will result, 
with matrix coefficients [ZZ] and [Z] of Eq. (2) always zero, 
if first-order in the streamwise ({) direction, and coefficients 
[D] and [E] always zero, if first-order in the normal (r]) 
direction. 

When the above list of criteria for obtaining a hyperbolic 
molecule is applied to a flow problem, then the resulting 
spatial discretization of a typical supersonic, viscous flow- 
field will easily lend itself to a partitioning of the global 
domain into distinct sub-domains, where this partitioning is 
based on the type of molecule (either elliptic, Fig. 1, or 
hyperbolic, Fig. 2) which is found in the respective sub- 
domains. Figure 3 illustrates a single vertical column of 
assembled molecules for part of a typical viscous supersonic 
flowfield. Obviously if a precise boundary were drawn 
between the elliptic and hyperbolic regions, it would be a 
“jagged” boundary line. Although this could have been 
done, for the sake of simplicity in this research, a horizontal 
interface between the regions was employed (as shown in 
Fig. 3), extending from the inflow to the outflow boun- 
daries. 

In the test problems to be presented, the horizontal 
boundary line between sub-domains is placed at the mini- 
mum height which is just high enough to ensure that no 
elliptic molecules are present in the hyperbolic region. This 
is an important restriction with respect to stability con- 
siderations and should never be violated, regardless of 

Streomwisection 

-IkIwI 

“Hyperbolic Region” 

FIG. 3. Typical supersonic viscous flow showing regional partitioning. 

whether this sub-domain interface is specified a priori, or is 
established adaptively as the solution evolves. This restric- 
tion ensures that all subsonic flow and also all supersonic 
reverse flow (if any) will be included in the elliptic sub- 
domain, and never in the hyperbolic sub-domain. On 
the other hand, by using this strategy, a few hyperbolic 
molecules can and will be included in the elliptic region, but 
this will in no way interfere with the implementation of the 
new algorithm. In fact, this criterion for the vertical place- 
ment of the horizontal regional boundary should be con- 
sidered only to be the minimum allowable height for this 
boundary, because in principle, there is no restriction on the 
maximum allowable height of this boundary, regardless of 
how many additional horizontal rows of hyperbolic 
molecules become included in the elliptic region. Finally, it 
is noted that if a second solid wall were found on the upper 
boundary, a second elliptic region would be established in 
the same manner as described, although in this research, 
only single wall problems are actually tested. 

Relaxation Algorithms 

When all the vector equations (i.e., one vector equation 
for each cell in the domain, given by Eq. (2)) in the entire 
domain of a given problem are assembled in matrix form, 
including explicit and consistently linearized implicit 
boundary conditions, the result is a large banded system of 
simultaneous equations which is linear in {“de}, given by: 

[VQ,Y PQ>= (R"(Q)) (4) 

{Qn+'> = IQ? + PQ> (5) 

n = 1, 2, 3, 4, . . 

It is easy to verify for very large time steps, that repeated 
direct solution of Eq. (4) (using Eq. (5) to update the solu- 
tion) is exactly the well-known Newton’s root-finding 
method for nonlinear equations. It can also be shown 
(Ref. [ 141) that for an initial guess which is sufficiently close 
to the root, Newton’s method will converge quadratically to 
the solution of {R(Q) > = 0, p rovided that the left-hand side 
of Eq. (4) is a consistent Newton linearization. Recent 
research on the use of direct solvers for the Navier-Stokes 
equations indicates that the procedure is not necessarily the 
most computationally efficient method (Refs. [ 15, 161). 
Nevertheless, the extraordinarily rapid convergence 
property of Newton’s method will be a guiding principle in 
the development of the present relaxation algorithm. 

As an alternative to repeated direct solution of the com- 
plete linear system given by Eq. (4), a class of relaxation 
algorithms can be developed, as shown below. Let [VI” of 
Eq. (4) be divided into two parts, such that 

[V]” = [My + [N-j”. (6) 
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Equation (4) is then replaced by a series of iterations, given 
by Eq. (7)> 

[M]” {‘YQi> = {R”(Q)} - [N]” {“dQ’-‘}, 

i = 1) 2, 3, . ..) (7) 

where {“AQ”} is any appropriate initial guess, usually 
taken to be zero. 

When Eq. (7) replaces the first step of the two-step 
iterative procedure given by Eqs. (4) and (5), then n is called 
the outer iteration index, and i is the index of inner itera- 
tions which may or may not be performed at each n th outer 
iteration level, Most of the recent research in upwind relaxa- 
tion methods for the equations of fluid flow has employed 
relaxation without inner iterations, where the inner iteration 
index is always one, and {“de”) is zero (Refs. [l-9]). 
Reference [ 171 is a general discussion on the use of inner 
iterations to solve nonlinear systems of equations, while 
Ref. [ 1 S] demonstrates specifically the use of inner itera- 
tions in the solution of the Navier-Stokes equations. Unless 
explicitly stated otherwise, all results to be presented herein 
are for relaxation methods which do not include the use of 
inner iterations. 

The conventional alternating forward/backward vertical 
line Gauss-Seidel (VLGS) relaxation algorithm is 
developed from Eqs. (6) and (7) by including matrix coef- 
ficients [A]-[,!?] of Eq. (2) in [A41 on both the forward 
and backward sweeps. On the forward pass only, coef- 
ficients [F] and [H] are also included in [M], and coef- 
ficients [G] and [Z] are included in [N]. On the backward 
pass, the procedure of the previous sentence is reversed. This 
algorithm allows for the sequential solution of relatively 
small sub-systems of simultaneous equations which have a 
block pentadiagonal structure, one such sub-system of 
equations for each vertical column of cells in the domain. 
For the forward sweep, the block pentadiagonal system of 
equations which must be solved at each vertical column of 
cells in the domain is given by Eq. (8) below for thejth ver- 
tical column of cells (note that the backward sweep is easily 
obtained from Eq. (8) by switching the positions of the i and 
i - 1 indices on the right side of the equation): 

= {R;(Q)) - VI; in@-,, - WI; (W-,1 
- [G]; {“AQ;.;;} - [I]; {“AQ;;;}. (8) 

It is easy to show for a purely supersonic yet inviscid flow- 
field, that the forward sweep VLGS procedure is exactly 
equivalent to a direct solution of the full linear system given 
by Eq. (4). Specifically, in this case, matrix coefficients [G] 
and [Z] of Eqs. (2) and (8) are everywhere equal to zero in 
the flowfield; therefore [N] is equal to zero and [M] is 

equal to [V] from Eq. (6), and, finally, Eq. (7) reduces to 
Eq. (4). For the sake of being precise, it should be noted that 
the preceding statement is only valid if the previously listed 
three criteria for obtaining a hyperbolic molecule are 
satisfied everywhere in the flowlield (except, of course, that 
the flow is inviscid). Therefore, for very large time steps, 
Newton iteration and thus quadratic convergence will be 
achieved. (Quadratic convergence occurs only under the 
restrictions previously mentioned in the discussion on 
Newton’s method). This is demonstrated explicitly in 
Ref. [8]. 

For high-speed viscous flows, Fig. 3 clearly illustrates 
that a relatively small, thin elliptic region (or regions) 
is responsible for the entire extent of all influence of 
downstream vertical columns of cells on upstream columns. 
It is these regions, of course, which prohibit quadratic con- 
vergence of forward sweeping VLGS for viscous, supersonic 
and hypersonic flow. In addition, it is noted that for many 
very high speed (hypersonic) viscous problems, the wall 
bounded subsonic elliptic region(s) can be very thin com- 
pared to the hyperbolic region. In light of the rapid con- 
vergence rates which may be obtained for high-speed 
inviscid flow using VLGS, it is postulated that significant 
acceleration of the VLGS algorithm is possible for super- 
sonic and hypersonic viscous flow through special attention 
to these often relatively small, elliptic regions, and this is the 
central hypothesis of this research. 

There are many possible relaxation procedures which 
could be proposed and tested which focus on the thin elliptic 
region(s) of the flowfield, some of which are topics of 
ongoing and proposed future work. In the method of the 
present research, however, as the first step of a two-step 
iterative procedure, a direct solver method was applied to 
each sub-system of equations which is associated with each 
elliptic subdomain in the field. This was accomplished by 
neglecting all matrix coefficients which are responsible for 
the implicit coupling of the elliptic sub-domain(s) to the 
global domain. This first step produces an estimate for the 
solution (i.e., the solution for { “AQ}) in the elliptic regions 
which would be obtained by direct solution of Eq. (4) for 
the entire domain. The second step of the two-step proce- 
dure is essentially the forward VLGS relaxation sweep (of 
Eq. (8)) across the global domain, with one modification. 
Specifically, the estimated solution for { “AQ} in the elliptic 
region(s) (from the first step) is used on the right-hand side 
of Eq. (8) with all terms involving matrix coefficients [G] 
and [Z]. This “correction” from the first step will allow the 
modified forward VLGS sweep to generate more accurate 
estimates for the direct (exact) solution of Eq. (4) at each 
time step, since these terms involving [G] and [I] are (in 
general) completely neglected during the standard forward 
VLGS pass of Eq. (8) (i.e., if inner iterations are not used). 
Therefore, greater error reductions per time step are, of 
course, expected. Finally, there is actually a third step to the 
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new algorithm, which is the simple solution update step 
given by Eq. (5). The new algorithm is thus given by the 
following equations: 

Step 1. 

Cv*l” i”dQ*> = @‘YQ*)) - CW {ndQ,.> (9) 

Step 2. 

j= 1,2, 3 , . . . . JEND (10) 

(JEND = Total No. of vertical columns of cells) 

Step 3. 

{Qn+'> = fQ"3 + {"dQ>, 
n-1,2,3 ,.... (11) 

Note that Eq. (9) represents a sub-system of equations 
which is solved in the elliptic region(s), one such sub-system 
for each elliptic sub-domain. All symbols with an asterisk 
(*) refer to quantities exclusively within an elliptic sub- 
domain. Matrix [P] is a very sparse matrix of coefficients 
representing the implicit coupling which exists between a 
sub-domain and the global domain. (“dQ,> represents the 
solution for the incremental change in the field variables 
which would be obtained in the first two horizontal rows 
of the cells in the hyperbolic region (located immediately 
adjacent to the elliptic/hyperbolic regional interface of 
Fig. 3) by direct solution of Eq. (4) for the entire domain. 
Except under the specific conditions to be described in the 
next paragraph, the matrix [P] of Eq. (9) was set to zero in 
this research. 

Finally, it is noted that an inner iteration loop can be 
established on the solution for (“de} , over Steps 1 and 2 
(Eqs. (9) and (10)) of the new method, at each outer (nth) 
iteration. On the first inner iteration, coupling matrix [P] 
is neglected, as before. On subsequent inner iterations, [P] 
is not set to zero, and an estimated value of { “dQc} is used 
from Step 2, Eq. (10) of the previous inner iteration. When 
this inner iteration method is programmed, the method can 
only be CPU efficient if the entire set of line block 
pentadiagonal sub-matrices are LU (lower/upper) factored 
only once and stored in memory on the first inner iteration, 
and then reused on all subsequent inner iterations. This 
applies also to the matrix (or matrices) [I’*] from the ellip- 
tic sub-domain(s), which of course exploits the fact that all 
implicit coefficient matrices are constant for a fixed n th 
outer iteration. Additional information on this LU 
storage/reuse procedure for inner iterations is found in 
Ref. [lS]. 

TEST RESULTS 

All computations for the two test cases which follow were 
performed on an IBM 3090 vector processing computer. 

Test Problem 1 

The first test problem is a M, = 2.0, Re, = 2.96 x 105, 
shock interaction with a laminar boundary layer on a flat 
plate, including a boundary layer separation bubble with 
downstream reattachment. (Re, is based on the distance 
from the leading edge of the plate to the point of shock 
impingement on the plate.) Figure 4 shows the pressure 
contours and Figure 5 is plot of skin friction, which 
illustrates the region of flow separation. On the left (inflow) 
boundary, all variables were held fixed, and the shock was 
generated on this boundary using the shock jump condi- 
tions based on inviscid theory. On the right (outflow) 
boundary, all variables were extrapolated. On the lower 
boundary, flow tangency was applied before the plate, and 
no-slip adiabatic conditions were enforced on the plate. On 
the top boundary, all variables were held fixed at the values 
of the shock jump conditions, which constitutes an over- 
specification of boundary conditions on that boundary. 
Computed results shown in Figs. 4 and 5 were performed on 
a 61 x 113 point grid, with stretching near the wall to help 
resolve gradients in this region. Actual test results to be 
presented for the new relaxation algorithm were performed 
on a coarser, 46 x 57 point grid, in order to conserve CPU 
time during the initial testing of the procedure. Additional 
details on this classic test problem are found in Refs. 
CL 191. 

Figure 6 is a plot of convergence history for the first test 
problem, where the L, norm of the residual (log) is plotted 
versus total CPU time. The solid line is the convergence 
history when using standard alternating forward/backward 
vertical line Gauss-Seidel (VLGS) iteration. The circles 
connected by a solid line represent the convergence history 
of the proposed new relaxation method of the present 

FIG. 4. Test problem l-Pressure contours for shock/laminar boun- 
dary layer interaction. 
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FIG. 5. Test problem l--Skin friction for shock/laminar boundary 
layer interaction. 

research. Clearly the new method produces substantial 
gains in efficiency over the standard VLGS algorithm. 

For all computations shown in Fig. 6, the Courant num- 
ber was started at a constant value of one for each cell in the 
domain and was then increased (without limit) in inverse 
proportion (constant of proportionality = 1.0) to the 
decrease in the L, norm of the residual, as the solution 
evolved. In addition, computations using the new relaxation 
algorithm were not begun until the solution was first 
initialized using standard forward/backward VLGS. 
Specifically, the L2 norm of the residual was initially 
reduced approximately two orders-of-magnitude. This is 
because during the large initial transient, as the solution 
progressed, the extra CPU time spent per iteration in the 
elliptic region was found to be ineffective in accelerating 
convergence, and the new algorithm was therefore found 
dur’ing this phase of the solution to be computationally less 
efficient than standard VLGS. However, once the initial 
transient was overcome, Fig. 6 clearly shows the dramatic 

present algorithm standard VLGS 
u-l6 ' I I I 1 I / / 

0 100 200 300 400 500 600 700 

CPU SECONDS 

FIG. 6. Test problem I-Convergence history of new relaxation 
algorithm compared to standard forward/backward VLGS. 

0 100 200 300 400 500 

CPU SECONDS 

FIG. 7. Test problem l&-Convergence history of new relaxation 
algorithm using inner iterations compared to standard forward/backward 
VLGS using conventional reuse line LU factorizations strategy. 

acceleration of convergence to machine zero when the new 
procedure is compared to standard VLGS. In this test case, 
the new algorithm was responsible for a reduction in total 
run time of about 75 %. 

Figure 7 is also a plot of convergence history results for 
the first test problem. Unless otherwise noted in the subse- 
quent discussion, Fig. 7 was produced using the same proce- 
dures which were used to produce Fig. 6. Specifically, in 
applying the proposed new relaxation algorithm, the results 
of Fig. 7 include the previously described use of inner itera- 
tions during each time step (or outer iteration). In order to 
automate the method, a convergence criterion is always 
required for the inner iterations at each time step, and this 
was accomplished for the results of Fig. 7 using the method 
developed and used in Ref. [IS]. Although extra CPU time 
must be spent in performing the inner iterations, it is noted 
that this CPU time was more than offset in this problem by 
the expected accelerated rate of error reduction per (outer) 
iteration. Specifically, by comparison of Figs. 6 and 7, it is 
seen that the use of inner iterations has improved the new 
relaxation algorithm with an additional reduction in total 
run time of approximately 30 % . For convenience, when 
making a comparison between the results of Figs. 6 and 7, 
the results of these two figures have simply been combined 
to form a single figure, Fig. 8. 

As in Fig. 6, the solid line in Fig. 7 represents the con- 
vergence history of the first problem using standard alter- 
nating forward/backward VLGS. However, in Fig. 7 the 
standard VLGS results have been accelerated using a well- 
known CPU savings strategy where inner iterations are not 
performed, but where all of the line LU factorizations (i.e., 
one LU factored block pentadiagonal matrix for each verti- 
cal column of cells) are stored over the entire domain and 
are reused for a specified number of time steps. This conven- 
tional CPU savings strategy (which exploits the fact that the 
implicit coefficient matrices become approximately constant 
as the solution nears the steady-state) is explained and 
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FIG. 8. Test problem l-Combined presentation of the results of 
Figs. 6 and 7. 

investigated in greater detail in Ref. [20]. For the standard 
VLGS results of Fig. 7, the choice of 25 reuses of each new 
set of line LU factorizations was found to be about the 
optimum for the problem, and the reuse procedure was 
started only after the initial transient in the solution was 
overcome. A factor of almost two savings in CPU time for 
standard VLGS is noted when using the reuse procedure 
(Fig. 7) compared with the results for standard VLGS 
without the procedure (Fig. 6). 

After the previously described convergence acceleration 
strategies are applied, the results of Fig. 7 show that the new 
relaxation algorithm has achieved approximately a 65% 
reduction in total run time when compared to the standard 
VLGS algorithm. The purpose in Fig. 7 of comparing the 
new algorithm using inner iterations with standard VLGS 
using the conventional reuse line LU factorizations proce- 
dure was to ensure that a fair comparison between two algo- 
rithms was made. In short, since the inner iteration method 
requires that the complete set of line LU factorizations be 
stored and reused during all inner iterations (if it is to be 
CPU efficient, as previously discussed), then a more equi- 
table comparison in this case is made when the standard 
VLGS algorithm is accelerated using the conventional reuse 
line LU factorizations method. 

TEST PROBLEM 2 

The second test problem is a M, = 5.0, Re, = 6.6 x 105, 
high-speed inlet configuration, where only laminar flow was 
considered. (Re, is based on the height of the entrance to 
the inlet.) Figure 9 shows the pressure contours from the 
computed results. The lower surface contains a 5’-compres- 
sion ramp, and no-slip, adiabatic conditions were applied 
on the entire lower boundary. On the upper boundary, flow 
symmetry was applied at the centerline of the inlet, and thus 
it was only necessary to compute the lower half of the flow- 
field. On the left (inflow) boundary, all variables were held 

FIG. 9. Test problem 2-Pressure contours for high-speed inlet 

fixed at the freestream conditions, and on the right (out- 
flow) boundary, all variables were extrapolated. All com- 
putational results for this problem were performed on an 
8 1 x 5 1 point grid, with stretching near the solid wall to help 
resolve gradients in this region. 

Figure 10 is a plot of convergence history for the second 
test problem, where the L, norm of the residual (log) 
is plotted versus total CPU time. The solid line is the 
convergence history when using standard alternating 
forward/backward VLGS iteration. The circles connected 
by a solid line represent the convergence history of the new 
relaxation method. Again the new method produces a gain 
in computational efficiency over the standard VLGS algo- 
rithm, but not as large a gain as in the first test problem. 

For the second test problem, the Courant number was 
initialized and then increased as the solution evolved, as 
described for the first test problem. In addition, computa- 
tions using the new relaxation algorithm were not begun 
until the solution was first initialized using standard VLGS. 
However, in this test problem, the initial transient was much 
more difficult to overcome than in the first test case, 
requiring a much larger percentage of the total CPU time 
to overcome. As is seen in Fig. 10, the residual actually 
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FIG. 10. Test problem 24onvergence history of new relaxation 
algorithm compared to standard forward/backward VLGS. 
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increased at first and remained at a very high level for a 
large amount of CPU time before dropping off rapidly. 
Nevertheless, once this transient was overcome, standard 
VLGS required about twice as much CPU time to reduce 
the residual to machine zero as did the new relaxation algo- 
rithm. The overall reduction in total run time, however, was 
about 10% in this case. 

In an effort to help overcome the excessively large initial 
transient in the solution which is found in the results of 
Fig. 10, some alternative methods were applied in this test 
problem, the results of which are to be presented sub- 
sequently. Specifically, when evaluating the inviscid flux 
vectors at the cell interfaces, a vector of “primitive” 
variables was interpolated from the cell centers to the 
cell interfaces. In this research, the four components of 
the vector of primitive variables include the variables of 
p, u, u, and P (i.e., density, both components of velocity in 
Cartesian coordinates, and pressure). In addition, a consis- 
tent linearization of all terms is taken with respect to the 
primitive variables (instead of with respect to the conserved 
variables, as previously discussed). A similar approach is 
taken in Ref. [21], in which it is noted that for hypersonic 
flows, significantly improved coefficient matrix conditioning 
(and thus convergence rates) is obtained through lineariza- 
tion with respect to primitive variables. This alternative 
linearization scheme is easily implemented by (1) taking 
advantage of the fact that the conserved variables and the 
primitive variables are functions of each other, and by (2) 
simple use of the chain rule of differentiation. Details 
concerning the implementation of this conversion to the 
alternative linearization are given in Ref. [22]. Finally, it is 
noted that in switching to primitive variables, the conser- 
vative nature of the upwind cell-centered finite volume 
formulation is preserved, as the governing equations are 
still solved in integral conservation law form. 

The computational results which are presented in Fig. 11 
are generated in a manner which is identical to that which 
is described for Fig. 10, with the single exception that the 
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FIG. 11. Test problem Z-Same as Fig. 10, except alternative use of 
primitive variables. 

alternative use of the primitive variables (discussed briefly 
in the previous paragraph) is employed. By comparison of 
Figs. 10 and 11, it is seen that this alternative method is 
quite effective in helping to overcome the initial transient in 
this test problem. Thereafter, as expected, the gain in com- 
putational efficiency which is achieved in the results of 
Fig. 11 through the use of the new algorithm for high-speed 
viscous flows (compared to standard VLGS) is about the 
same as that which is achieved in the results of Fig. 10. The 
overall reduction in total run time as a consequence of the 
new relaxation algorithm is now about 20% in this 
problem. 

The elliptic sub-region for the second test problem was 
found to include only the first two horizontal rows of cells 
starting at the lower boundary. In contrast, the elliptic sub- 
region for the first test problem includes the first eight 
horizontal rows of cells out from the lower boundary, which 
is a much larger percentage of the total number of cells in 
the domain. Consequently, in the first test problem, propor- 
tionally, a much larger amount of CPU time was spent 
applying the direct solver in the elliptic region on each itera- 
tion than was spent in the second test problem. For this 
reason it is contrary to what was first intuitively expected, 
that the new relaxation algorithm performed significantly 
better in accelerating convergence in the first test problem 
than it did in the second. However, in the limit, as the ellip- 
tic/hyperbolic interface is raised to the upper boundary of 
the domain, it is clear that the new algorithm approaches 
the pure direct solver algorithm, as the quality of the 
estimated solution (i.e., the solution for {“de*} of Eq. (9)) 
in the elliptic region improves. Consequently, despite the 
penalty in extra computational work (as well as computer 
storage) at each time step which occurs when the regional 
boundary is raised, the payoff in increased error reductions 
per time step could possibly result in a more efficient overall 
algorithm. 

For the reason which is discussed in the previous 
paragraph, it now seems likely that the criterion which was 
used in this present research for the vertical placement of 
the regional boundary is, in general, not necessarily the 
optimum location with respect to overall algorithm 
efficiency. Furthermore, the optimum location of this 
elliptic/hyperbolic regional interface is surely related to the 
strength of the interaction across this partition, as well as to 
the proximity of the regional interface to the boundary of 
the domain. Additional research is needed to investigate 
these issues. 

SUMMARY AND CONCLUSIONS 

A new upwind relaxation procedure for the Navier- 
Stokes equations has been developed and successfully 
tested on two trial problems, including a flat plate shock/ 
boundary layer problem, and also a high-speed inlet. The 
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new method is applicable to high-speed (i.e., supersonic/ 
hypersonic) viscous flows. 

The relaxation algorithm is simple and easy to apply. 
At each iteration (time step), the procedure is essentially a 
two-step process. A direct solver is first applied to each 
sub-domain in the field which is identified to be “elliptic” 
in character, and these results are then coupled to a line 
Gauss-Seidel relaxation pass across the entire domain in 
the streamwise direction. 

In both test cases the new algorithm was not efficient in 
helping to overcome the initial transient as the solution was 
just beginning to evolve. This is to be expected with any 
convergence acceleration scheme which is based on 
Newton’s root finding method (as is the algorithm of the 
present research), since the large error reductions per 
iteration which are associated with Newton’s method are 
not realized until the transient solution is sufficiently close 
to the root (i.e., the steady-state solution). However, once 
the large initial transient was overcome, the new relaxation 
algorithm produced significant gains in computational 
efficiency for both test cases. 

The gain in computational efficiency was particularly 
large in the first test case (i.e., the shock/boundary layer 
problem), where the new method was seen to reduce total 
run time by as much as 75 % . The overall gain in computa- 
tional efficiency in the high-speed inlet test case was about 
20 % , which was clearly not as substantial as for the first 
test case. Finally, the severe initial transient which was at 
first encountered in the second test case was significantly 
reduced by everywhere replacing the use of conserved 
variables with the use of primitive variables. 
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